Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Huan Jing Ke Xue ; 45(3): 1812-1820, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471892

RESUMO

Heavy metal contamination of soil has become a hot issue of social concern due to its impact on the safety of agricultural products in recent years. Wheat is one of the most dominant staple food crops worldwide and has become a major source of toxic metals in human diets. Foliar application was considered to be a more efficient and economical method of heavy metal remediation. Field experiments were carried out in Cd-, As-, and Pb-contaminated farmland soils. The effects of foliar conditioners on the accumulation of Cd, As, and Pb in wheat grains were investigated after being sprayed with Zn (0.2% ZnSO4), Mg (0.4% MgSO4), and Mn (0.2% MnSO4) separately and in combination. Thus, the effective foliar conditioners were selected to block the accumulation of Cd, As, and Pb in wheat grains grown in combined heavy metal-contaminated farmland in north China. The results showed that, compared with that in the control, the Cd, As, and Pb contents in wheat grains of the Zn+Mg+Mn foliar treatment were significantly decreased by 18.96%, 23.87%, and 51.31%, respectively, and TFgrain/straw decreased by 14.62%, 27.73%, and 47.70%, respectively. Thus, spraying the compound foliar conditioner of Zn+Mg+Mn could effectively reduce heavy metal accumulation in wheat grains through inhibition translocation of those metals from stem leaves to grain. In addition, the results indicated that Cd and As were mainly distributed at the central endosperm (34.08%-37.08%), whereas Pb was primarily distributed at the pericarp and seed coat (27.78%) of the wheat grain. Compared with that in the control, spraying the compound foliar conditioner of Zn+Mg+Mn extremely decreased Cd and As accumulation in the aleurone layer of the wheat grain by 81.10% and 82.24%, respectively. Except for the pericarp, seed coat, and central endosperm layers, the Pb content in each grain layer was dramatically decreased by 42.85% to 91.15%. There was only a significant negative correlation between heavy metal content and Zn content in the aleurone layer (P2) of wheat flour. In summary, the accumulation of Cd, As, and Pb in wheat grains, especially in the aleurone layer, could be effectively reduced by foliar conditioner application at the jointing, booting, and early filling stages of wheat, separately. Furthermore, besides the foliar treatment, removing wheat bran to reduce Cd contamination in wheat grains is highly recommended to ensure the safe production of wheat.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Humanos , Cádmio/análise , Zinco , Chumbo , Fazendas , Farinha , Poluentes do Solo/análise , Triticum , Solo , Grão Comestível/química
2.
Gen Relativ Gravit ; 56(2): 28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384399

RESUMO

We analytically extend the 5D Myers-Perry metric through the event and Cauchy horizons by defining Eddington-Finkelstein-type coordinates. Then, we use the orthonormal frame formalism to formulate and perform separation of variables on the massive Dirac equation, and analyse the asymptotic behaviour at the horizons and at infinity of the solutions to the radial ordinary differential equation (ODE) thus obtained. Using the essential self-adjointness result of Finster-Röken and Stone's formula, we obtain an integral spectral representation of the Dirac propagator for spinors with low masses and suitably bounded frequency spectra in terms of resolvents of the Dirac Hamiltonian, which can in turn be expressed in terms of Green's functions of the radial ODE.

3.
Huan Jing Ke Xue ; 44(11): 6328-6338, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973115

RESUMO

To investigate the effects of leaves and stems on the accumulation and transport of cadmium(Cd) and arsenic(As) in wheat shoots after flowering, a field experiment was conducted in a typical Cd and As co-contaminated agricultural land to explore the distribution and translocation of Cd and As in the different parts of two wheat cultivars after flowering. The results showed that Cd was mainly distributed in the nodes of two varieties, and the translocation factors of Cd from internode 3 to node 2, from internode 2 to node 1, and from sheath 1 to node 1 were markedly higher than those of other aboveground parts during the grain-filling stage. However, Cd was mainly distributed in the leaves, and the translocation factors of Cd from sheath to leaf and from node 1 to rachis was significantly higher than those of other parts at the mature stage. In addition, the transport capacity of Cd from glume to rachis and from rachis to grain in JM22 was significantly lower than that in SN28, which significantly reduced Cd concentrations in the rachis, glume, and grain of JM22 by 22.3%, 40.8%, and 44.4%, respectively. Meanwhile, As was mainly distributed in the wheat leaves from the grain-filling stage to the mature stage, and As concentrations in the glume and grain of JM22 were 25.8% and 33.3% lower than those of SN28, respectively. Additionally, the translocation factors of As from the sheath to the node were significantly 438% and 190% higher than that from leaf to sheath and from node to internode during the whole grain filling stage and mature stage. Moreover, the translocation factors of As from glumes to grains and from rachis to grains in JM22 were 40.6% and 44.4% lower than that in SN28, respectively. In summary, flag leaf, node 1, and the rachis had regulated Cd transport and accumulation in wheat grains, whereas leaf 3, flag leaf, node 1, the glumes, and the rachis were mainly responsible for As transport and accumulation in wheat grains.


Assuntos
Arsênio , Poluentes do Solo , Cádmio/análise , Triticum , Grão Comestível/química , Agricultura , Poluentes do Solo/análise , Solo
4.
Gene Ther ; 30(1-2): 75-87, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132206

RESUMO

Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Gliose , Camundongos , Animais , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Neurônios/metabolismo , Lesões Encefálicas Traumáticas/terapia , Encéfalo/metabolismo , Regeneração
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166586, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374802

RESUMO

Lenvatinib, a multitarget tyrosine kinase inhibitor (TKI), increases the incidence of severe hypertension and thus the incidence of cardiovascular complications. Inhibition of ferroptosis, a newly recognized type of cell death, alleviates endothelial dysfunction. Here, we report that lenvatinib-induced hypertension is associated with ferroptosis of endothelial cells. RNA sequencing (RNA-seq) showed that lenvatinib led to ferroptosis of endothelial cells and that administration of mouse with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, dramatically ameliorated lenvatinib-induced hypertension and reversed lenvatinib-induced impairment of endothelium-dependent relaxation (EDR). Furthermore, lenvatinib significantly reduced glutathione peroxidase 4 (GPX4) expressions in the mouse aorta and human umbilical vein endothelial cells (HUVECs) and increased lipid peroxidation, lactate dehydrogenase (LDH) release, and malondialdehyde (MDA) levels in HUVECs. Immunofluorescence and Western blotting showed that lenvatinib significantly reduced Yes-associated protein (YAP) nuclear translocation but not cytoplasmic YAP expression in HUVECs. The data, generated from both in vivo and in vitro, showed that lenvatinib reduced total YAP (t-YAP) expression and increased the phosphorylation of YAP at both Ser127 and Ser397, without affecting YAP mRNA levels in HUVECs. XMU-MP-1 mediated YAP activation or YAP overexpression effectively attenuated the lenvatinib-induced decrease in GPX4 expression and increases in LDH release and MDA levels. In addition, overexpression of YAP in HUVECs ameliorated lenvatinib-induced decrease in the mRNA and protein levels of spermidine/spermine N (1)-acetyltransferase-1 (SAT1), heme oxygenase-1 (HO-1), and ferritin heavy chain 1 (FTH1). Taken together, our data suggest that lenvatinib-induced inhibition of YAP led to ferroptosis of endothelial cells and subsequently resulted in vascular dysfunction and hypertension.


Assuntos
Ferroptose , Hipertensão , Humanos , Camundongos , Animais , Pressão Sanguínea , Células Endoteliais da Veia Umbilical Humana , RNA Mensageiro
6.
J Cancer Prev ; 28(4): 175-184, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38205359

RESUMO

This study aimed to investigate the prognostic significance of tumor mutation burden (TMB) among patients with non-small cell lung cancer (NSCLC) who received platinum-based adjuvant chemotherapy. Tumor tissue specimens after surgical resection were collected for DNA extraction. Somatic mutation detection and TMB analysis were conducted using next-generation sequencing (NGS). Recurrence status of the patients was assessed in the hospital during the adjuvant chemotherapy period, and long-term survival data of patients were obtained by telephone follow-up. Univariate analysis between TMB status and prognosis was carried out by survival analysis. A retrospective review of 78 patients with non-squamous NSCLC who received platinum-based adjuvant chemotherapy showed a median disease-free survival of 3.6 years and median overall survival (OS) of 5.3 years. NGS analysis exhibited that the most common mutated somatic genes among the 78 patients were tumor suppressor protein p53 (TP53), epidermal growth factor receptor, low-density lipoprotein receptor related protein 1B, DNA methyltransferase 3 alpha and FAT atypical cadherin 3, and their prevalence was 56.4%, 48.7%, 37.2%, 30.7%, and 25.6%, respectively. TMB status was divided into TMB-L (≤ 4.5/Mb) and TMB-H (> 4.5/Mb) based on the median TMB threshold. Relevance of TMB to prognosis suggested that the median OS of patients with TMB-L was significantly longer than that of patients with TMB-H (NR vs. 4.6, P = 0.014). Higher TMB status conferred a worse implication on OS among patients with non-squamous NSCLC who received platinum-based adjuvant chemotherapy.

7.
Front Pharmacol ; 13: 970812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278222

RESUMO

Background: Previous studies have demonstrated that activated endothelial epithelial sodium channel (EnNaC) impairs vasodilatation, which contributes to salt-sensitive hypertension. Here, we investigate whether mesenteric artery (MA) EnNaC is involved in cold exposure-induced hypertension (CIH) and identify the underlying mechanisms in SD rats. Methods: One group of rats was housed at room temperature and served as control. Three groups of rats were kept in a 4°C cold incubator for 10 h/day; among which two groups were administrated with either benzamil (EnNaC blocker) or eplerenone (mineralocorticoid receptor antagonist, MR). Blood pressure (BP), vasodilatation, and endothelial function were measured with tail-cuff plethysmography, isometric myograph, and Total Nitric Oxide (NO) Assay kit, respectively. A cell-attached patch-clamp technique, in split-open MA, was used to determine the role of EnNaC in CIH rats. Furthermore, the plasma aldosterone levels were detected using an ELISA kit; and Western blot analysis was used to examine the relative expression levels of Sgk1 and Nedd4-2 proteins in the MA of SD rats. Results: We demonstrated that cold exposure increased BP, impaired vasodilatation, and caused endothelial dysfunction in rats. The activity of EnNaC significantly increased, concomitant with an increased level of plasma aldosterone and activation of Sgk1/Nedd4-2 signaling. Importantly, CIH was inhibited by either eplerenone or benzamil. It appeared that cold-induced decrease in NO production and impairment of endothelium-dependent relaxation (EDR) were significantly ameliorated by either eplerenone or benzamil in MA of CIH rats. Moreover, treatment of MAs with aldosterone resulted in an activation of EnNaC, a reduction of NO, and an impairment of EDR, which were significantly inhibited by either eplerenone or GSK650394 (Sgk1 inhibitor) or benzamil. Conclusion: Activation of EnNaC contributes to CIH; we suggest that pharmacological inhibition of the MR/Sgk1/Nedd4-2/EnNaC axis may be a potential therapeutic strategy for CIH.

8.
World J Clin Cases ; 9(27): 8164-8170, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34621876

RESUMO

BACKGROUND: The occurrence of Streptococcus pneumoniae-associated hemolytic uremic syndrome (SP-HUS) is increasing. Thomsen-Friedenreich antigen activation is highly involved in the pathogenesis of SP-HUS, and T-antibody-negative plasma exchange (PE) may be effective in the treatment of severe cases of SP-HUS. CASE SUMMARY: We retrospectively reviewed two pediatric patients with SP-HUS. Both clinical features and laboratory examination results of the children were described. T-antibody-negative PE was performed in both cases. Both children made a full recovery after repeated PE and remained well at a 2 year follow-up. CONCLUSION: Streptococcal pneumonia continues to be an uncommon but important cause of HUS. The successful treatment of the presented cases suggests that T-antibody-negative PE may benefit patients with SP-HUS.

9.
Front Cell Dev Biol ; 9: 672335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222246

RESUMO

BACKGROUND: Hyperhomocysteinemia (HHcy) causes cardiovascular diseases via regulating inflammatory responses. We investigated whether and how the epithelial sodium channel (ENaC), a recently identified ion channel in endothelial cells, plays a role in HHcy-induced endothelial dysfunction. METHODS: Cell-attached patch-clamp recording in acute split-open aortic endothelial cells, western blot, confocal imaging, and wire myograph combined with pharmacological approaches were used to determine whether HHcy-mediated inflammatory signaling leads to endothelial dysfunction via stimulating ENaC. RESULTS: The data showed that 4 weeks after L-methionine diet the levels of plasma Hcy were significantly increased and the ENaC was dramatically activated in mouse aortic endothelial cells. Administration of benzamil, a specific ENaC blocker, ameliorated L-methionine diet-induced impairment of endothelium-dependent relaxation (EDR) and reversed Hcy-induced increase in ENaC activity. Pharmacological inhibition of NADPH oxidase, reactive oxygen species (ROS), cyclooxygenase-2 (COX-2)/thromboxane B2 (TXB2), or serum/glucocorticoid regulated kinase 1 (SGK1) effectively attenuated both the Hcy-induced activation of endothelial ENaC and impairment of EDR. Our in vitro data showed that both NADPH oxidase inhibitor and an ROS scavenger reversed Hcy-induced increase in COX-2 expression in human umbilical vein endothelial cells (HUVECs). Moreover, Hcy-induced increase in expression levels of SGK-1, phosphorylated-SGK-1, and phosphorylated neural precursor cell-expressed developmentally downregulated protein 4-2 (p-Nedd4-2) in HUVECs were significantly blunted by a COX-2 inhibitor. CONCLUSION: We show that Hcy activates endothelial ENaC and subsequently impairs EDR of mouse aorta, via ROS/COX-2-dependent activation of SGK-1/Nedd4-2 signaling. Our study provides a rational that blockade of the endothelial ENaC could be potential method to prevent and/or to treat Hcy-induced cardiovascular disease.

10.
Ann Transl Med ; 9(9): 768, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34268381

RESUMO

BACKGROUND: The purpose of this study was to develop an optimal diabetes-osteoarthritis (DM-OA) mouse model to validate that diabetes aggravates osteoarthritis (OA) and to evaluate the microarchitecture, chemical composition, and biomechanical properties of subchondral bone (SB) as a consequence of the DM-OA-induced damage induced. METHODS: Mice were randomly divided into three groups: DM-OA group, OA group, and sham group. Blood glucose levels, body weight, and food intake of all animals were recorded. Serum calcium (Ca) and osteocalcin (OCN) levels were compared in the three groups. The messenger ribonucleic acid (mRNA) and protein expression of key regulators for bone metabolism were detected. A semi-quantitative grading system [Osteoarthritis Research Society International (OARSI)] was used to evaluate cartilage and SB degeneration. Microspectroscopy, microindentations, micro-computed tomography (CT) imaging, and fracture load of compression testing were also used to evaluate trabecular SB properties. RESULTS: Glycemic monitoring and pancreas pathological results indicated stable high blood glucose and massive destruction of pancreas and islet cells in the DM-OA group. Serum levels of bone specific alkaline phosphatase (ALP-B) and tartrate-resistant acid phosphatase 5b (TRACP-5b) in the DM-group were higher than those of the other two groups while levels of serum Ca and OCN were lower. Meanwhile, the protein and mRNA expression of osteoblast-specific biomarkers [osteoprotegerin/receptor activator of nuclear factor kappa-B ligand (OPG/RANKL) ratio, collagen type I (COL-I), Runt-related transcription factor 2 (RUNX-2), OCN] were suppressed, and osteoclast-specific biomarkers [sclerostin (SOST)] was elevated in the DM-OA group. The mineral-to-collagen ratio, microindentation elastic modulus, hardness, micro-architectural parameters, bone mineral density, and fracture load of SB trabecular bone of the DM-OA group joint were lower than those of the other two groups. On the other hand, The OARSI score, trabecular spacing, and structural model index of the DM-OA group joint were higher than those of the other two groups. CONCLUSIONS: The glycemic and pancreatic pathological results indicated that the DM-OA model was a simple and reliable model induced by streptozotocin (STZ) and surgery. The results revealed the mechanisms through which diabetes accelerates OA; that is, by damaging and deteriorating the functions of SB, including its microarchitecture, chemical composition, and biomechanical properties.

11.
Front Pharmacol ; 12: 665111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122084

RESUMO

The use of cyclosporine A (CsA) in transplant recipients is limited due to its side effects of causing severe hypertension. We have previously shown that CsA increases the activity of the epithelial sodium channel (ENaC) in cultured distal nephron cells. However, it remains unknown whether ENaC mediates CsA-induced hypertension and how we could prevent hypertension. Our data show that the open probability of ENaC in principal cells of split-open cortical collecting ducts was significantly increased after treatment of rats with CsA; the increase was attenuated by lovastatin. Moreover, CsA also elevated the levels of intracellular cholesterol (Cho), intracellular reactive oxygen species (ROS) via activation of NADPH oxidase p47phox, serum- and glucocorticoid-induced kinase isoform 1 (Sgk1), and phosphorylated neural precursor cell-expressed developmentally downregulated protein 4-2 (p-Nedd4-2) in the kidney cortex. Lovastatin also abolished CsA-induced elevation of α-, ß-, and γ-ENaC expressions. CsA elevated systolic blood pressure in rats; the elevation was completely reversed by lovastatin (an inhibitor of cholesterol synthesis), NaHS (a donor of H2S which ameliorated CsA-induced elevation of reactive oxygen species), or amiloride (a potent ENaC blocker). These results suggest that CsA elevates blood pressure by increasing ENaC activity via a signaling cascade associated with elevation of intracellular ROS, activation of Sgk1, and inactivation of Nedd4-2 in an intracellular cholesterol-dependent manner. Our data also show that NaHS ameliorates CsA-induced hypertension by inhibition of oxidative stress.

12.
Front Pharmacol ; 12: 627875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054517

RESUMO

We have shown that cholesterol regulates the activity of ion channels in mouse cortical collecting duct (CCD) mpkCCDc14 cells and that the transient receptor potential melastatin 4 (TRPM4) channel is expressed in these cells. However, whether TRPM4 channel is regulated by cholesterol remains unclear. Here, we performed inside-out patch-clamp experiments and found that inhibition of cholesterol biosynthesis by lovastatin significantly decreased, whereas enrichment of cholesterol with exogenous cholesterol significantly increased, TRPM4 channel open probability (Po) by regulating its sensitivity to Ca2+ in mpkCCDc14 cells. In addition, inside-out patch-clamp data show that acute depletion of cholesterol in the membrane inner leaflet by methyl-ß-cyclodextrin (MßCD) significantly reduced TRPM4 Po, which was reversed by exogenous cholesterol. Moreover, immunofluorescence microscopy, Western blot, cell-surface biotinylation, and patch clamp analysis show that neither inhibition of intracellular cholesterol biosynthesis with lovastatin nor application of exogenous cholesterol had effect on TRPM4 channel protein abundance in the plasma membrane of mpkCCDc14 cells. Sucrose density gradient centrifugation studies demonstrate that TRPM4 was mainly located in cholesterol-rich lipid rafts. Lipid-protein overlay experiments show that TRPM4 directly interacted with several anionic phospholipids, including PI(4,5)P2. Depletion of PI(4,5)P2 with either wortmannin or PGE2 abrogated the stimulatory effects of exogenous cholesterol on TRPM4 activity, whereas exogenous PI(4,5)P2 (diC8-PI(4,5)P2, a water-soluble analog) increased the effects. These results suggest that cholesterol stimulates TRPM4 via a PI(4,5)P2-dependent mechanism.

13.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165989, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065235

RESUMO

We previously showed that increased epithelial sodium channel (ENaC) activity in endothelial cells induced by oxidized low-density lipoprotein (ox-LDL) contributes to vasculature dysfunction. Here, we investigated whether ENaC participates in the pathological process of atherosclerosis using LDL receptor-deficient (LDLr-/-) mice. Male C57BL/6 and LDLr-/- mice were fed a normal diet (ND) or high fat diet (HFD) for 10 weeks. Our data show that treatment of LDLr-/- mice with a specific ENaC blocker, benzamil, significantly decreased atherosclerotic lesion formation and expression of matrix metalloproteinase 2 (MMP2) and metalloproteinase 9 (MMP9) in aortic arteries. Furthermore, benzamil ameliorated HFD-induced impairment of aortic endothelium-dependent dilation by reducing expression of proinflammatory cytokines, including TNF-α, IL-1ß, and IL-6 and production of adhesion molecules including VCAM-1 and ICAM-1 in both C57BL/6 and LDLr-/- mice fed with HFD. In addition, HFD significantly increased ENaC activity and the levels of serum lipids, including ox-LDL. Our in vitro data further demonstrated that exogenous ox-LDL significantly increased the production of TNF-α, IL-1ß, IL-6, VCAM-1 and ICAM-1. This ox-LDL-induced increase in inflammatory cytokines and adhesion molecules was reversed by γ-ENaC silencing or by treatment with the cyclooxygenase-2 (COX-2) antagonist celecoxib. Benzamil inhibited HFD-induced increase in COX-2 expression in aortic tissue in both C57BL/6 and LDLr-/- mice, and γ-ENaC gene silencing attenuated ox-LDL-induced COX-2 expression in HUVECs. These data together suggest that HFD-induced activation of ENaC stimulates inflammatory signaling, thereby contributes to HFD-induced endothelial dysfunction and atherosclerotic lesion formation. Thus, targeting endothelial ENaC may be a promising strategy to halt atherogenesis.


Assuntos
Aterosclerose , Dieta Hiperlipídica/efeitos adversos , Canais Epiteliais de Sódio/metabolismo , Receptores de LDL/deficiência , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Citocinas/genética , Citocinas/metabolismo , Canais Epiteliais de Sódio/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Receptores de LDL/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Acta Pharmacol Sin ; 42(9): 1437-1448, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33303990

RESUMO

Aflibercept, as a soluble decoy vascular endothelial growth factor receptor, Which has been used as a first-line monotherapy for cancers. Aflibercept often causes cardiovascular toxicities including hypertension, but the mechanisms underlying aflibercept-induced hypertension remain unknown. In this study we investigated the effect of short-term and long-term administration of aflibercept on blood pressure (BP), vascular function, NO bioavailability, oxidative stress and endothelin 1 (ET-1) in mice and cultured endothelial cells. We showed that injection of a single-dose of aflibercept (18.2, 36.4 mg/kg, iv) rapidly and dose-dependently elevated BP in mice. Aflibercept treatment markedly impaired endothelial-dependent relaxation (EDR) and resulted in NADPH oxidases 1 (NOX1)- and NADPH oxidases 4 (NOX4)-mediated generation of ROS, decreased the activation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) concurrently with a reduction in nitric oxide (NO) production and elevation of ET-1 levels in mouse aortas; these effects were greatly attenuated by supplementation of L-arginine (L-arg, 0.5 or 1.0 g/kg, bid, ig) before aflibercept injection. Similar results were observed in L-arg-pretreated cultured endothelial cells, showing markedly decreased ROS accumulation and AKT/eNOS/NO signaling impairment induced by aflibercept. In order to assess the effects of long-term aflibercept on hypertension and to evaluate the beneficial effects of L-arg supplementation, we administered these two drugs to WT mice for up to 14 days (at an interval of two days). Long-term administration of aflibercept resulted in a sustained increase in BP and a severely impaired EDR, which are associated with NOX1/NOX4-mediated production of ROS, increase in ET-1, inhibition of AKT/eNOS/NO signaling and a decreased expression of cationic amino acid transporter (CAT-1). The effects caused by long-term administration were greatly attenuated by L-arg supplementation in a dose-dependent manner. We conclude that aflibercept leads to vascular dysfunction and hypertension by inhibiting CAT-1/AKT/eNOS/NO signaling, increasing ET-1, and activating NOX1/NOX4-mediated oxidative stress, which can be suppressed by supplementation of L-arg. Therefore, L-arg could be a potential therapeutic agent for aflibercept-induced hypertension.


Assuntos
Arginina/farmacologia , Hipertensão/induzido quimicamente , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Recombinantes de Fusão/efeitos adversos , Doenças Vasculares/induzido quimicamente , Animais , Aorta/metabolismo , Aorta/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Doenças Vasculares/metabolismo , Doenças Vasculares/fisiopatologia
15.
Oxid Med Cell Longev ; 2020: 3921897, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194000

RESUMO

Previous studies have shown that high salt induces artery stiffness by causing endothelial dysfunction via increased sodium influx. We used our unique split-open artery technique combined with protein biochemistry and in vitro measurement of vascular tone to test a hypothesis that bone morphogenetic protein 4 (BMP4) mediates high salt-induced loss of vascular relaxation by stimulating the epithelial sodium channel (ENaC) in endothelial cells. The data show that high salt intake increased BMP4 both in endothelial cells and in the serum and that exogenous BMP4 stimulated ENaC in endothelial cells. The data also show that the stimulation is mediated by p38 mitogen-activated protein kinases (p38 MAPK) and serum and glucocorticoid-regulated kinase 1 (Sgk1)/neural precursor cell expressed developmentally downregulated gene 4-2 (Nedd4-2) (Sgk1/Nedd4-2). Furthermore, BMP4 decreased mesenteric artery relaxation in a benzamil-sensitive manner. These results suggest that high salt intake stimulates endothelial cells to express and release BMP4 and that the released BMP4 reduces artery relaxation by stimulating ENaC in endothelial cells. Therefore, stimulation of ENaC in endothelial cells by BMP4 may serve as another pathway to participate in the complex mechanism of salt-sensitive (SS) hypertension.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Células Endoteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Hipertensão/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Células Endoteliais/patologia , Hipertensão/patologia , Proteínas Imediatamente Precoces/metabolismo , Masculino , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
J Cancer ; 11(20): 5929-5940, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922535

RESUMO

Background: TGF-ß1 promotes cell proliferation in only some tumors and exerts bidirectional regulatory effects on the proliferation of fibroblasts. This study intends to explore whether the mechanism is related to increased expression of Ski. Methods: Cell proliferation of the fibrosarcoma cell line L929 was assessed with an ELISA BrdU kit. The mRNA and protein expression levels of the corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting in vitro and in vivo. Additionally, c-Ski was knocked down using RNAi. The expression of Ski in human dermatofibrosarcoma protuberans (DFSP) specimens was measured by immunohistochemistry. Results: TGF-ß1 promoted the continued proliferation of L929 cells in a dose-dependent manner, with increased c-Ski expression levels. Conversely, inhibition of c-Ski significantly abrogated this unidirectional effect, significantly inhibited the decrease in p21 protein levels and did not affect the increase in p-Smad2/3 levels upon TGF-ß1 treatment. Similarly, inhibition of c-Ski significantly abrogated the growth-promoting effect of TGF-ß1 on xenograft tumors. Furthermore, we found that high expression of Ski in DFSP was correlated with a low degree of tumor differentiation. Conclusions: Our data reveal that high c-Ski expression is a cause of TGF-ß1-promoted proliferation in fibrosarcoma tumor cells and show that inhibiting Ski expression might be effective for treating tumors with high Ski levels.

17.
Oncol Lett ; 19(3): 1735-1740, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32194666

RESUMO

Gastrointestinal stromal tumors (GISTs) are the most commonly diagnosed primary mesenchymal tumors of the gastrointestinal tract and 30% of GISTs are associated with a high recurrence risk or metastasis. The current risk classification criteria of the National Comprehensive Cancer Network are based on tumor size, mitotic activity and localization. Investigating additional biomarkers associated with clinical risk may aid in the diagnosis of GIST and improves prediction of patient prognosis. In the present study, the value of using the expression levels of the oncoprotein ski as a prognostic predictor for GISTs was investigated. The results demonstrated that high ski expression levels were correlated with high risk and recurrence rates and indicated poor prognosis regarding median disease-free survival. Overall, the present study suggests that ski expression levels may serve as a predictor for clinical risk and prognosis of patients with GISTs.

18.
Oncol Lett ; 19(4): 2895-2901, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32218844

RESUMO

Lung cancer is the most common cause of cancer-associated mortality in China with 85% of patients having non-small cell lung cancer (NSCLC). Identifying NSCLC driver genes and prognostic markers is critical to reducing these numbers. The studies of retinoblastoma binding protein 6 (RBBP6) performed on NSCLC is limited. The present study aimed to investigate the molecular function and the prognostic potential of RBBP6 in NSCLC using the A549 cell line and patient samples, respectively. The functional effect on cancer cell proliferation and prognostic value of RBBP6 were examined in vitro and in vivo using reverse transcription-quantitative PCR, immunofluorescence, immunohistochemistry (IHC) and xenograft implantation. The results demonstrated that RBBP6 mRNA expression was significantly higher in NSCLC tissues compared with in adjacent normal samples. When RBBP6 mRNA expression was interfered with using short hairpin RNA, A549 cell proliferation and xenograft tumor growth were reduced. Additionally, IHC and survival analysis demonstrated that patients with NSCLC with high expression levels of RBBP6 had a shorter median overall survival time compared with patients with low RBBP6 expression (31 vs. 51.5 months), and this was more prominent in stage I-II patients (43 vs. >67 months). High expression levels of RBBP6 indicated poor prognosis in patients with NSCLC. This may be due to the ability of RBBP6 to promote cancer cell proliferation. RBBP6 may be a potential prognostic biomarker and a therapeutic target for NSCLC.

19.
Br J Pharmacol ; 176(18): 3695-3711, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31222723

RESUMO

BACKGROUND AND PURPOSE: We have shown that cholesterol is synthesized in the principal cells of renal cortical collecting ducts (CCD) and stimulates the epithelial sodium channels (ENaC). Here we have determined whether lovastatin, a cholesterol synthesis inhibitor, can antagonize the hypertension induced by activated ENaC, following deletion of the cholesterol transporter (ATP-binding cassette transporter A1; ABCA1). EXPERIMENTAL APPROACH: We selectively deleted ABCA1 in the principal cells of mouse CCD and used the cell-attached patch-clamp technique to record ENaC activity. Western blot and immunofluorescence staining were used to evaluate protein expression levels. Systolic BP was measured with the tail-cuff method. KEY RESULTS: Specific deletion of ABCA1 elevated BP and ENaC single-channel activity in the principal cells of CCD in mice. These effects were antagonized by lovastatin. ABCA1 deletion elevated intracellular cholesterol levels, which was accompanied by elevated ROS, increased expression of serum/glucocorticoid regulated kinase 1 (Sgk1), phosphorylated neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) and furin, along with shorten the primary cilium, and reduced ATP levels in urine. CONCLUSIONS AND IMPLICATIONS: These data suggest that specific deletion of ABCA1 in principal cells increases BP by stimulating ENaC channels via a cholesterol-dependent pathway which induces several secondary responses associated with oxidative stress, activated Sgk1/Nedd4-2, increased furin expression, and reduced cilium-mediated release of ATP. As ABCA1 can be blocked by cyclosporine A, these results suggest further investigation of the possible use of statins to treat CsA-induced hypertension.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Anti-Hipertensivos/uso terapêutico , Bloqueadores do Canal de Sódio Epitelial/uso terapêutico , Hipertensão/tratamento farmacológico , Lovastatina/uso terapêutico , Animais , Anticolesterolemiantes/farmacologia , Anti-Hipertensivos/farmacologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/fisiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Túbulos Renais/metabolismo , Lovastatina/farmacologia , Masculino , Camundongos Knockout
20.
Nanoscale Res Lett ; 13(1): 333, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353236

RESUMO

Integrin ß1 is known to be involved in differentiation, migration, proliferation, wound repair, tissue development, and organogenesis. In order to analyze the binding probability between integrin ß1 ligand and cluster of differentiation 29 (CD29) receptors, atomic force microscopy (AFM) was used to detect native integrin ß1-coupled receptors on the surface of human adipose-derived stem cells (hADSc). The binding probability of integrin ß1 ligand-receptor interaction was probed by integrin ß1-functionalized tips on hADSc during early chondrogenic differentiation at the two-dimensional cell culture level. Cell morphology and ultrastructure of hADSc were measured by AFM, which demonstrated that long spindled cells became polygonal cells with decreased length/width ratios and increased roughness during chondrogenic induction. The binding of integrin ß1 ligand and CD29 receptors was detected by ß1-functionalized tips for living hADSc. A total of 1200 curves were recorded at 0, 6, and 12 days of chondrogenic induction. Average rupture forces were, respectively, 61.8 ± 22.2 pN, 60 ± 20.2 pN, and 67.2 ± 22.0 pN. Rupture events were 19.58 ± 1.74%, 28.03 ± 2.05%, and 33.4 ± 1.89%, respectively, which demonstrated that binding probability was increased between integrin ß1 ligand and receptors on the surface of hADSc during chondrogenic induction. Integrin ß1 and the ß-catenin/SOX signaling pathway were correlated during chondrogenic differentiation. The results of this investigation imply that AFM offers kinetic and visual insight into the changes in integrin ß1 ligand-CD29 receptor binding on hADSc during chondrogenesis. Changes in cellular morphology, membrane ultrastructure, and the probability of ligand-transmembrane receptor binding were demonstrated to be useful markers for evaluation of the chondrogenic differentiation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...